
0022±460X/99/160065 � 20 $30.00/0 # 1999 Academic Press

A SPACE^TIME FINITE ELEMENT METHOD
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A space±time ®nite element method (STFEM) for elastoplastic dynamic
analysis is proposed in this paper. A weak form of the governing equation
which corresponds to the conservation of impulse-momentum (the shock-
momentum equation) is established, based on which STFEM equations are
derived. A family of linear temporal shape functions is studied, which for linear
elasticity, the ensuing STFEM algorithm is equivalent to the Newmark
algorithm with g� 0�5. Rate-independent plasticity is incorporated into the
model. As a numerical example, a cantilever beam under shock loading is
analyzed. The results show that the propagation of shock waves is drastically
slowed down by the presence of plasticity. Also, because the plastic
deformation tends to be localized in the vicinity of the impact, a full transient
analysis is essential, in order to accurately determine the locations of the plastic
hinges.
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1. INTRODUCTION

The dynamic behavior of structures with elastoplastic constitutive equations has
attracted considerable interest in the past three decades or so. In this paper,
attention is focused on shock-loaded structures, and to compute their
elastoplastic response, an unconventional ®nite element technique based on a
uni®ed space±time discretization approach is employed. Analytical treatment of
shock-loaded structures via say, the limit analysis is quite popular. However, the
models used are relatively simple with the results obtained by assuming a priori
the locations of the plastic hinges. A more accurate handling of this problem,
particularly when dynamic plasticity is involved, is to carry out a full transient
response calculation. This would enable the time-history for quantities of interest
to be traced and thus, permits some intriguing features such as localization
phenomena to be captured and monitored. The procedure is, however, numerical
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rather than analytical, and in this regard, the ®nite element method is extremely
popular. In fact, it is fair to say that computational elastoplasticity is now well-
established, and many general purpose ®nite element programs are available.
The Galerkin ®nite element approach for dynamic analysis is to employ ®nite
elements to discretize the spatial domain and a ®nite difference scheme for the
time domain (see for example, references [1, 2]). Plasticity is incorporated as a
physical non-linearity. From a methodology point of view, the plasticity problem
is formulated by adding to the equations of motion of a deformable body, a set
of equations regarding the evolution of state variables. The treatment of the rate
form equations, notably by numerical integration, is now well known [3±6].
As mentioned, most ®nite element procedures for solving time dependent

problems are based on a two-stage discretization: ®nite elements are employed
®rst to reduce the partial differential equations into a system of ordinary
differential equations in time, and then a ®nite difference technique is employed
to perform the time-integration. This method is well understood and very
popular. However, for problems involving rapid gradient changes, it may
experience numerical dif®culties. An alternative approach for dealing with
transient dynamics that has attracted renewed interest in recent years, is to
discretize both the space and time domains simultaneously. This concept of the
space±time ®nite element method (STFEM) ®rst emerged towards the late sixties
[7±10]. The approach possesses a number of merits over the conventional ®nite
element technique. As shown by Zienkiewicz [11] and subsequently by Tang et al.
[12], STFEM is able to replicate a wide range of time integration schemes,
particularly, the commonly used ones. With the introduction of discontinuous
temporal ®nite elements [13±15], novel integration schemes which lead to stable
and accurate results can be derived. An interesting application to a non-linear
problem was demonstrated by Cella et al. [16]. Although numerical properties of
the ensuing algorithm for handling nonlinear analysis are problem-dependent,
generally, there are no guarantees of uniqueness and stability of the solutions,
this procedure did show success in a number of cases.
STFEM for dynamic problem can also be derived from Hamilton's Law of

Varying Action (or simply, Hamilton's Law), or equivalently, from a virtual
work principle in both the space and time domains. Note that we are not
referring to Hamilton's principle which is a special case of Hamilton's Law. In
the former, the ®nal and initial co-ordinates, and time must be known. A more
in-depth discussion is presented in Bailey [17], and Baruch and Riff [18]. The
STFEM equations formulated this way possess a clear physical meaning in that
they relate the change of system momenta between two time-steps with the
impulse arising from external and internal forces during the time interval
considered. Thus, the resulting set of STFEM equations can be interpreted as
the general law of impulse and momentum. This approach has been adopted
here in our STFEM formulation. A weak form of the governing equations is
derived from the virtual work principle. The advantage of using the weak form
approach is that it can be physically interpreted as the generalized law of
conservation of impulse-momentum and therefore, can be applied to a wider class
of problems. Further details can be found in reference [19]. For simplicity, the
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time discretization will be con®ned to a family of linear interpolations, and it can
be shown that for linear elasticity, this algorithm is equivalent to the Newmark
method with g� 0�5. Also, in the absence of physical damping in the system, the
algorithm will not suffer from numerical damping. Incorporation of plasticity is
achieved by assuming a temporal pattern of plastic ¯ow during the time interval
considered. In this way, the STFEM equations can be written explicitly. The
model will be restricted to rate-independent plasticity only since implementation
of the rate-dependent plasticity can be treated in a similar way.

2. A WEAK FORM OF THE GOVERNING EQUATIONS

2.1. GOVERNING EQUATIONS OF ELASTO-PLASTIC DYNAMIC PROBLEM

The dynamic problem of an elastoplastic body, assuming in®nitesimal strains,
is generally described by the following set of equations.

Equilibrium equation:

L�s� � f � r�u� c _u on O6I: �1�
Strain-displacement relationship:

e � L1�u�: �2�
Constitutive relationship:

_s � Dep _e: �3�
Boundary conditions:

u�x, t� � ~u�x, t� on @Ou6I,

t�x, t� � s�n � ~t�x, t� on @Os6I:
�4�

Initial conditions:

u�x, 0� � u0�x�, _u�x, 0� � _u0�x�: �5�
Note that O is the region the body occupies; I ��0;T� is the time domain;

s, e, u are the generalized stress (or stress resultant), strain and displacement
vectors; L, L1 denote differential operators in the spatial domain, the meaning of
which depend on the speci®c problem; a dot denotes time derivative; r, c are the
inertial and viscous damping matrices, positive or semi-positive de®nite; f is the
external force vector; @Ou and @Os denote the exclusive parts of the boundaries
on which the displacement u and traction force t are prescribed; and n is the
outward normal vector on @Os. For the sake of simplicity, it will be assumed
that ~t�x; t� � 0 in the remainder of the paper. At this point, plasticity is simply
characterized as a rate-form constitutive relation between stress and strain, with
a more detailed description to be introduced in succeeding sections. Note that
for work hardening materials, equations (1)±(5) specify a well-posed initial-
boundary value problem, from which a unique and stable incremental solution
can be obtained.
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2.2. A WEAK FORM OF GOVERNING EQUATIONS

The governing equations can be recasted into a weak form as follows. Find

u : L��u� 2 L2�O�, uj@Ou
� ~u�x, t�, duj@Ou

� 0,

such that�
I

�r _u, du�O dtÿ
�
I

�s,L��du��O dtÿ
�
I

�c _u, du�O dt�
�
I

�f, du�O dt � �r _u, du�O
����t2
t1

�6�

in which �a; b�O �
�
O a � b dO;L� denotes the adjoint operator of L de®ned by the

bilinear form ��,��O; I ��t1, t2�; and L2�O� denotes the space of square-integrable
functions de®ned on O. A straight forward manipulation shows that the Euler±
Lagrange equation of the above functional yields the equilibrium equation (1)
and the prescribed traction boundary conditions (4). Furthermore, the velocity
can be treated as an independent variable. To this end, we will introduce a new
variable v such that

vÿ _u � 0, �7�
where v : v 2 L2�O�, vj@Ou

� _~u�x, t�, dvj@Ou
� 0. Adding a least square term to

equation (6) yields�
I

�r _u, du�O dtÿ
�
I

�s,L��du��O dtÿ
�
I

�c _u, du�O dt

�
�
I

�f, du�O dtÿ
�
I

�r� _uÿ v�, d _uÿ dv�O dt � �r _u, du�O
����t2
t1

, �8�

which after integration and performing some algebraic manipulations leads to�
I

�rv, d _u�O dtÿ
�
I

�s,L��du��O dtÿ
�
I

�c _u, du�O dt

�
�
I

�f, du�O dt � �r _u, du�O
����t2
t1

�
I

�r�vÿ _u�, dv�O dt � 0: �9�

Observe that one now has the variational equation of the Hellinger±Reissner
principle [6] for dynamic problems. The physical meaning of equation (6) is
obvious: it can be regarded as the weak form of the law of impulse-momentum
which states that the change of the system momenta during any two time steps is
equal to the impulse from the external and internal forces acting on that system.
Perhaps it would be more appropriate to call it the shock-momentum equation.
Equation (9) represents its counterpart in which the displacement and velocity
are regarded as independent variables. Note that the initial value enters through
the time-limit terms (right-hand side of equation (9)) This implies that its
solution can be constructed in a step-by-step manner.
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3. STFEM FORMULATION

3.1. STFEM DISCRETIZATION

The ®nite element discretization of equation (9) will now be formulated. A
space±time ®nite element is constructed as a union of the conventional ®nite
element and an appropriately chosen time discretization scheme. That is, for a
conventional ®nite element partitioning

~O �
[nelem
e�1

Oe, �10�

and a partitioning in time

I � �0,T� �
[N
n�1

In, In � �tn, tn�1� , �11�

the space±time ®nite element is de®ned as

Qe � Oe6In: �12�
The ®nite element representation of equation (9) then reads, ®nd the solutions

over the discretized domain uk, vh

uh 2 Uh � fuh : L�uh� 2 L2�[Qe�, uhj@O � ~u�x, t�g,
vh 2 Vh � fvh : L�vh� 2 L2�[Qe�, vhj@O � _~u�x, t�g, �13�

such that�
I

�rvh, d _uh�O dtÿ
�
I

�sh,L��duh��O dtÿ
�
I

�c _uh, duh�O dt�
�
I

�f, duh�O dt � �r _uh, duh�O
����t2
t1

,

�
I

�r�vh ÿ _uh�,dvh�Oe
dt � 0 for every Oe, �14�

on any time interval I.

3.2. TEMPORAL INTERPOLATIONS

Our attention will be con®ned to a particular family of piecewise linear time
interpolations. That is, for a time-slab t 2 In � �tn, tn�1�; Dt � tn�1 ÿ tn. The
displacement and velocity can be approximated as

uh�t� � Nn�t�uhn�x� �Nn�1�t�uhn�1�x�, vh�t� � �1ÿ x�vhn�x� � xvhn�1�x�, �15�
where x � tÿ tn=Dt and uhn, v

h
n are the nodal values. The following requirements

for the temporal shape function Nn have to be satis®ed:

Ni�tj� � dij,Nn�t� �Nn�1�t� � 1,

�
In

Nn�t�dt � Dt
2
,

�
In

Nn�1�t�dt � Dt
2
, �16�
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and if �
In

Nn�t�Nn�1�t� dt � bDt, �17�

where b is a constant, one has�
In

�Nn�t��2 dt � 1

2
ÿ b

� �
Dt,

�
In

�Nn�1�t��2 dt � 1

2
ÿ b

� �
Dt: �18�

With these considerations, and possibly further time-interpolations for stress,
the temporal integration of equation (14) can be carried out. For clarity, spatial
interpolations will be discussed in the following subsection and then provide the
explicit STFEM equations.

3.3. SPATIAL INTERPOLATIONS AND STFEM EQUATIONS

As is customary in a ®nite element formulation, the spatial discretization is
performed as

uhi �x� � NUi, vhi �x� � NVi, i � 1; . . .N, �19�
in which N denotes the spatial shape functions and Ui, Vi the nodal values at a
certain time-step. The general strain vector e is then given by

e � BU, �20�
where

B � L1�N�x��: �21�
Note that the speci®c form of the differential operator in the spatial domain L1

is dependent on the problem being investigated. The following matrices and
vectors can be subsequently obtained:

M � �N; rN�O, C � �N; cN�O, F � �N; f�O, P � �B; s�O, �22�
where M, C are the mass and damping matrices, and F, P the external and
internal force vectors. Substituting the quantities in equations (22) into equation
(14), after performing some algebraic operations, the following two sets of
equations are derived:

ÿM

2
�Vn�1 � Vn� � C

2
�Un�1 ÿUn� �

�
In

NT
n �t�P dt �M _Un �

�
In

NT
1 �t�Fdt,

ÿM

2
�Vn�1 � Vn� ÿ C

2
�Un�1 ÿUn� ÿ

�
In

NT
n�1�t�P dt �M _Un�1 ÿ

�
In

NT
2 �t�F dt,

�23�
and
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1

3
Vn�1 � 1

6
Vn

� �
Dtÿ 1

2
�Un�1 ÿUn� � 0,

1

6
Vn�1 � 1

3
Vn

� �
Dtÿ 1

2
�Un�1 ÿUn� � 0:

�24�
Upon eliminating Vn�1;Vn produces

M
Un�1 ÿUn

Dt
� C

2
�Un�1 ÿUn� �

�
In

NT
n �t�P dt �M _Un �

�
In

NT
n �t�F dt, �25�

M
Un�1 ÿUn

Dt
� C

2
�Un�1 ÿUn� ÿ

�
In

NT
n�1�t�P dt �M _Un�1 ÿ

�
In

NT
n�1�t�F dt:

�26�
The following equation follows immediately from equations (25) and (26):

M� _Un�1 ÿ _Un� �
�
In

F dtÿ
�
In

P dtÿ C�Un�1 ÿUn�, �27�

which clearly states that the change of momentum of a system equals the
impulse of the external, internal and damping forces. Equations (25) and (27) (or
alternatively, equations (25) and (26)) constitute the STFEM equations for
response computations. The response of the system can now be computed in a
step-by-step manner. Initially, the unknown displacement Un�1 is calculated
from equation (25) and then, the unknown velocity _Un�1 is calculated from
equation (27) (or alternatively, from equation (26)). If plasticity is considered,
then P is in general a non-linear function of, among others, Un�1, the solution of
which can be achieved via Newton±Raphson iterations.

Remark 1
If a temporal interpolation was chosen for the internal force
P : P�t� � PnNn�t� � Pn�1Nn�1�t�, as is the case of linear elastodynamics, and in
the absence of damping, equations (25) and (26) are equivalent to the Newmark
method with g� 0�5, with the parameter b possessing the same meaning.

Remark 2
Remark 1 gives the connotation that the current approach is equivalent to the
well-established Newmark method, at least for the case mentioned here. In fact,
this proposed approach is much more versatile. For example, b for each element
can be different, resulting in mixed integration schemes. In other words, the
algorithm depicted by equations (25) and (26) is just a special case emanating
from equation (14).

4. INCORPORATION OF RATE-INDEPENDENT PLASTICITY

In this section, the incorporation of plasticity into the STFEM model derived
previously is discussed. Only rate-independent plasticity will be considered. It
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provides a well-posed initial-boundary value problem for work hardening
materials and guarantees a unique and stable incremental solution.

4.1. RATE-INDEPENDENT PLASTICITY

The constitutive equations governing elastoplastic deformations assuming
in®nitesimal strains, the associative ¯ow rule and the associative hardening rule
may be expressed in the form

e � ee � ep, s � D�eÿ ep�, _ep � _l
@f�s, q�
@s

, _q � ÿ _lH
@f�s, q�
@s

, �28�

where ep is plastic strain, q is a set of plastic variables, _l is the plastic multiplier,
H is the matrix of plastic moduli, and f is the yield function such that any
admissible state would have to satisfy

f�s; q�E0: �29�
The loading and unloading process is governed by the Kuhn±Tucker condition

f�s, q�E0, _le0, _lf�s, q� � 0, �30�
along with the consistency condition

_l _f�s, q� � 0: �31�

4.2. DISCRETIZATION SCHEME

The rate-form equations are then discretized to yield the constitutive relations
suitable for the STFEM formulation. Assuming that the state variables at time
tn, i.e., sn, en, e

p
n, qn are known, then e

p
n�1, qn�1 can be predicted by the

backward difference formulas

e
p
n�1 ÿ epn � _lDt

@fn�1
@sn�1

� ln�1
@fn�1
@sn�1

, �32�

qpn�1 ÿ qn � ÿ _lDtH
@fn�1
@qn�1

� ÿln�1H @fn�1
@qn�1

: �33�

Also, the consistency condition is enforced at each time-step:

_lf�sn�1, qn�1� � 0: �34�
In view of the displacement interpolations in equation (15) and the strain±

displacement relationship in equation (20), one has, for t2 In,
e�t� � Nn�t�en �Nn�1�t�en�1 � en �Nn�1�t��en�1 ÿ en�, �35�

and also

e p�t� � Nn�t�epn �Nn�1�t�epn�1 � epn �Nn�1�t��epn�1 ÿ epn�: �36�
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It follows from equations (28), (32), (35) and (36) that

s�t� � sn �D en�1 ÿ en ÿ ln�1
@fn�1
@sn�1

� �
Nn�1, �37�

where sn � D�en ÿ epn�. Substituting equation (37) into equation (25), and taking
equations (16) and (17) into consideration, one obtains

M

Dt2
� C

2Dt

� �
�Un�1 ÿUn� � bGn�1 � 1

Dt
M _Un �

�
In

NT
n �t�F dt

� �
ÿ 1

2
Pn, �38�

in which the generalized internal force increment Gn�1 is de®ned by

Gn�1 �
�
O
BTD B�Un�1 ÿUn� ÿ ln�1

@fn�1
@sn�1

� �
dO: �39�

4.3. SOLUTION PROCEDURE

The full transient response can now be solved progressively. At each time-step,
equation (38) is solved ®rst to yield displacement Un�1, then equation (27) is
employed to compute velocity _Un�1. Due to the plastic constitutive law, the
former is non-linear. The following global±local iteration scheme is employed: a
global equilibrium iteration is performed to provide a displacement increment,
this increment is then inputted as a prescribed displacement to calculate ln�1 via
the enforcement of the discrete consistency condition. The objective, therefore, is
to ®nd Un�1 and ln�1 such that

Rn�1 � M

Dt2
� C

2Dt

� �
�Un�1 ÿUn� � bGn�1

� 1

2
Pn ÿ 1

Dt
M _Un �

�
In

NT
n �t�Fdt

� �
� 0;

cn�1 � _lf�sn�1; qn�1� � 0,

�40�

are satis®ed. To perform the global equilibrium iterations, the Newton±Raphson
method is used. The procedure is described as follows, with particular emphasis
on the dynamic tangential stiffness matrix Ki

T . Using superscript i to indicate the
iteration number, and given that U0

n�1 � Un, the iteration procedure can be
expressed as,

Ki
T DU

i
n�1 � ÿRi

n�1, Ui�1
n�1 � Ui

n�1 � DUi
n�1: �41�

Convergence is attained when the displacement increment attains

jRi
n�1j=jR0

n�1jEtol, �42�
where tol is an assigned error tolerance. The dynamic tangent stiffness matrix Ki

T

is given by
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Ki
T �

M

Dt2
� C

2Dt
� b

@Gi
n�1

@Ui
n�1

, �43�

where the last term can be derived from the constitutive relation and the
consistency condition. Note that b has the same meaning as that employed in the
Newmark method. A particularly interesting result which is algorithmically
consistent with the implicit backward Euler difference algorithm of Simo and
Taylor [20] for yielding function satisfying @2c=�@s @q� � 0 is derived as

@Gi
n�1

@Ui
n�1
�
�
O
BT ~Dÿ 1

hi � ai
~D
@fn�1 @fn�1
@sn�1 @sn�1

T
~D

� �
B dO, �44�

in which

~D � Dÿ1 � lin�1
@2fi

n�1
@sin�1 @s

i
n�1

 !ÿ1
;

ai � @f
i
n�1

@sin�1

T

Dÿ1 � lin�1
@2fi

n�1
@sin�1 @s

i
n�1

 !ÿ1
@fi

n�1
@sin�1

,

hi � @f
i
n�1

@qin�1

T

Hÿ1 � lin�1
@2fi

n�1
@qin�1 @q

i
n�1

 !ÿ1
@fi

n�1
@qin�1

:

�45�

The local iterations of enforcing the consistency condition known as return
mapping has been extensively discussed elsewhere, see for example, reference [21].

5. APPLICATION TO A TIMOSHENKO BEAM

To demonstrate the method developed here, the elastoplastic response of a
Timoshenko beam subjected to an impact load will be considered. The
Timoshenko beam theory is chosen, in lieu of the simpler Euler±Bernoulli beam
theory since the former not only models a wider range of beam types, but also,
yields more accurate results, especially at higher vibration frequencies. The
classical Timoshenko beam theory will ®rst be re-formulated and a plasticity
model incorporated into it. Then, a numerical example involving a cantilevered
beam discretized by 20 elements and subjected to a tip impact load will be
provided.

5.1. TIMOSHENKO BEAM THEORY

Assuming elastic constitutive behavior, the equations governing the free
vibration of a Timoshenko beam depicted in Figure 1 can be written as,

@M

@x
ÿQ � rI

@2c
@t2

, ÿ @Q
@x
� rA

@2w

@t2
, �46�
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k � @c
@x

, g � cÿ @v
@x

, �47�

M � EIk, Q � GAg, �48�
where M is the bending moment and Q is the shear force, k is the curvature of
neutral axis, g is the shear angle, w is the transverse displacement, c the rotating
angle of the cross-section originally perpendicular to the neutral axis, and r, E,
G, I, A are the usual material-cross sectional constants.
Employing the vector notations

u � �c,w�T, e � �k, g�T, s � �M,Q�T, �49�
the form of the operators L, L1 as well as matrices D, r become evident. Due to
its simplicity, the C0 element of Hughes and Taylor [22] is used for spatial
discretization. To overcome shear locking in this element a reduced integration is
applied to its shear stiffness term.

5.2. PLASTICITY MODEL

The plasticity model employed for the analysis is now described, the details of
which can be found in reference [23]. A circular yielding surface with isotropic
hardening rule is chosen as our basic plastic model, so that it resembles the well-
known J2 associative plasticity theory for 2D analysis. It should be pointed out
that no substantial dif®culties are anticipated in incorporating other plastic
models, if so desired. For the convenience of describing plastic ¯ow,
dimensionless stress and strain are used. The non-dimensional stress vector is
de®ned as

x

x

w
M

M

Q

Q

Cross-section
before deformation

Cross-section
after deformation

Shear angle
Neutral axis

Figure 1. Timoshenko beam model, sign conventions and notations.
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s1 � M

M0
, s2 � N

N0
, s � fs1 s2gT, �50�

and the non-dimensional strain vector by

e1 �M0

N0
k, e2 � e, e � fe1 e2gT, �51�

where M, N are the bending moment and axial force, and M0, N0 are the

corresponding yield values under the single load condition. The elastic

constitutive equation in terms of s and e is

s � D*e, �52�
where

D* � EIn0=m
2
0

0

0

EA=n0

� �
: �53�

The yielding condition is formulated as

f�s; k� � jsj ÿ s0 ÿH�ep � 0, �ep �
�t
0

j _epjdt, �54, 55�

where jsj �
�������
sTs
p

, the Euclidean norm �ep is the equivalent plastic strain, and

serves as the plastic parameter q in section 3. The ¯ow rule, in the form of non-

dimensional plastic strain rate, is given by

_e p � _l
@f
@s

, _�e p � _l: �56�

Note that the plastic parameter l and the yielding function f satisfy the plastic

loading and unloading condition (the Kuhn±Tucker condition). The elastoplastic

constitutive equation is given as usual as

_s � D*�eÿ _ln�: �57�
The parameter _l can be eliminated by satisfying the plastic consistency

condition. Performing the necessary algebraic manipulation [22], one gets the

rate-form constitutive equation as

_s � D*
ep _e, D*

ep � D* ÿ gD*nnTD*, �58�

which in terms of the conventional stress and strain is

Dep � Dÿ ~gDn 0n 0TD, �59�
where
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~g � g=n0, n 0 � Sn, S �
n0
�
m0

1

24 35: �60�

Remark 3
Although both the bending moment and axial force appeared in the expression
of tangential module matrix Dep , the transverse bending and axial tension will
not be coupled unless geometric non-linearity is considered.

5.3. NUMERICAL EXAMPLE

A cantilever beam subjected to an impact load at its tip is used as an
example to demonstrate the method. Its con®guration, physical parameters and
material properties are depicted in Figure 2. The spatial domain is evenly
discretized into 20 elements. The quantities of interest are computed as follows:
(1) the lowest natural frequency is o1� 52 rad/s, (2) the longitudinal wave speed
is c� 2�03(105) in/s.
To capture the propagation of the plastic zone, a time-step of Dt� 4�0610±5 s

which satis®es c �Dt1DL, DL being the length of element employed, is adopted.
For the purpose of comparison, the transient response at the tip of the beam
predicted by STFEM for b� 0�25 and 0�50, and by the Newmark method with
(b� 0�25, g� 0�50 are presented in Figure 3. As shown, the results deviate very
little from each other.
The elastic and plastic responses are sketched in Figure 4. It is interesting to

note that plastic deformations along the beam develop very rapidly, after which
the whole beam unloads elastically with its period of oscillation almost
unaltered; only its center of oscillation is shifted. This is perhaps characteristic of
the elastoplastic behavior of structures under shock loading. The deformed
con®gurations at various time-steps when plastic deformations are still evoluting
and the corresponding elastic deformations are plotted in Figure 5. It can be
seen that the propagation of shock waves is drastically slowed down by the

x

w

F

L

�
�

Figure 2. Cantilever beam subjected to an impact load: E � 3�06107 psi, G � 1�26107 psi,
I � 155�3 in4, A � 44�2 in2, L� 160 in, r� 0�773610±3 lb s2/in2, m0 � 6�336107 lb in, H � 0�1E and
F�Dt � 100 lb s.
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Figure 3. Comparison of tip response: ÐÐÐ, Newmark; ÐÐ, STFEM, b� 0�25; ��������,
STFEM, b� 0�50.
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Figure 4. Elastic response versus plastic response; ÐÐÐÐ, linear elastic; Ð Ð, plastic.
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Figure 5. Deformed con®gurations: (a) 0< t< 40Dt, (b) 0< t< 100Dt, (c) 41Dt< t< 80Dt, (d)
100Dt< t< 200Dt, (e) 2900Dt< t< 2920Dt, and (f) 2950Dt< t< 3050Dt.
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presence of plasticity. However, once the plastic deformations are fully
developed, the wave speed recovers.
It would also be interesting to look at the evolution and distribution of plastic

deformations. To this end the effective plastic strain along the length of the
beam at various time-steps is plotted in Figure 6. Our ®rst ®nding is that plastic
deformations develop almost instantly, a matter that we have already pointed
out. Also, plastic deformations tend to be localized in the vicinity of the point of
impact which is expected. This implies that a full transient analysis is necessary
for shock-dynamic problems, to accurately determine the location of the plastic
hinges. For example, if a limit analysis were to be used for an assessment of this
problem, a plastic hinge would be assumed to occur at the clamped end which is
not the case at all. In fact, as the hardening parameter tends to zero, plastic
deformations will become more localized, with the wave speed approaching zero.
This of course, further reinforces our contention that a transient analysis is
absolutely essential.
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Figure 6. Propagation of the plastic zone; (a) 0< t< 100Dt, (b) 101Dt< t< 200Dt, (c)
210Dt< t< 300Dt, and (d) 2950Dt< t< 3050Dt.
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A comparison of the responses of damped and undamped systems is also
provided. The purpose is to demonstrate the effectiveness of the present
algorithm in handling damping forces. A Rayleigh damping of the form
C� 20�5M is used. The resulting elastic response of both damped and undamped
systems is presented in Figure 7 and the plastic counterpart in Figure 8.
Obviously, the amplitude of the vibration is reduced by the presence of damping.
Observe that the damping in general, will not affect the evolution and
distribution of the plastic deformations signi®cantly. Instead, it is the hardening
parameter that plays this role, as mentioned previously.

6. CONCLUDING REMARKS

A STFEM scheme for elastoplastic dynamic analysis is proposed in this paper.
A weak form of the governing equation which can be physically interpreted as
the generalized law of conservation of impulse-momentum (the shock-momentum
equation) is given. The space±time ®nite element is constructed by unifying
conventional ®nite elements with piecewise linear time interpolations. Rate-
independent plasticity is also incorporated into the model. It is found that the
STFEM formulation is inherently suitable for handling the evolution equations
of plastic ¯ow. Also, the suggested STFEM formulation can actually lead to a
rather broad range of algorithms, the one used to facilitate the computations
here is just a special case, which for linear undamped elasticity, is equivalent to
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Figure 7. Elastic damped and undamped response: ÐÐÐÐ, damped; ± ± ± ±, undamped.
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the Newmark method with g� 0�5. The status of current research is to focus on
the use of discontinuous temporal interpolations for equation (14), and
hopefully, this will lead to more accurate algorithms. The integration of
evolution functions can also be cast in the STFEM formulation, and thus, a
more uniformed framework for plastic transient analysis can be established.
However, if the aim is to obtain an algorithm with symmetric consistent
tangential operator, some more work needs to be done which is also being
investigated. Finally, as demonstrated in the numerical simulations, plastic
deformations develop almost instantly. They tend to be localized in the vicinity
of the point of impact which implies that a full transient analysis is absolutely
essential for structures subjected to shock loading. Also, it was shown that
damping reduces the amplitude of the vibration, but will not, in general, affect
the evolution and distribution of the plastic deformations signi®cantly. Instead,
it is the hardening parameter that plays this role.

ACKNOWLEDGMENT

In carrying out this research, ®nancial support from the following source is
gratefully acknowledged: Research Contract SSC XSG91-00142-(607) from
Defense Research Establishment Suf®eld.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0
0.05 0.10 0.150.00 0.20

Time (s)

R
es

p
o

n
se

 (
in

)

Figure 8. Plastic damped and undamped response: ÐÐÐÐ, damped; ± ± ± ±, undamped.
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